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Abstract

Analysis and interpretation of DNA Microarray data is a fundamental task in

bioinformatics. Feature Extraction plays a critical role in better performance of

the classifier.

We address the dimension reduction of DNA features in which relevant features

are extracted among thousands of irrelevant ones through dimensionality reduc-

tion. This enhances the speed and accuracy of the classifiers. Principal Component

Analysis (PCA) is a technique used for feature extraction which helps to retrieve

intrinsic information from high dimensional data in eigen spaces to solve the curse

of dimensionality problem. The curse of dimensionality means n >> m, where n

is a large number of features and m is a small number of samples (may be too less).

Neural Networks (NN) and Support Vector Machine (SVM) are implemented and

their performances are measured in terms of predictive accuracy, specificity, and

sensitivity. First, we implement PCA for significant feature extraction and then

FFNN trained using Backpropagation (BP) and SVM are implemented on the

reduced feature set.

Next, we propose a Multiobjective Genetic Algorithm-based fuzzy clustering

technique using real coded encoding of cluster centers for clustering and clas-

sification. This technique is implemented on microarray cancer data to select

training data using multiobjective genetic algorithm with non-dominated sorting

(MOGA-NSGA-II). The two objective functions for this multiobjective techniques

are optimization of cluster compactness as well as separation simultaneously. This

approach identifies the solution i.e. the individual chromosome which gives the

optimal value of the compactness and separation. Then we find high confidence

points for these non-dominated set using a fuzzy voting technique. Support Vec-

tor Machine (SVM) classifier is further trained by the selected training points

which have high confidence value. Then remaining points are classified by trained

SVM classifier. Finally, the four clustering label vectors through majority vot-

ing ensemble are combined, i.e., each point is assigned a class label that obtains



the maximum number of votes among the four clustering solutions. The per-

formance of the proposed MOGA-SVM, classification and clustering method has

been compared to MOGA-BP, SVM, BP. The performance are measured in terms

of Silhoutte Index, ARI Index respectively. The experiment were carried on three

public domain cancer data sets, viz., Ovarian, Colon and Leukemia cancer data

to establish its superiority.

Keywords: Cancer Classification; Feature Reduction; Multiobjective genetic al-

gorithm; Neural Network; Pareto-optimality; Principal components; Support Vec-

tor Machine(SVM)
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Chapter 1

Introduction

1.1 Introduction

Much research is being done in the academics as well as the industries towards

the application of bioinformatics that uses computational approaches to solve bio-

logical problems. The goal of this field is to retrieve, analyze and interpret the vast

and complex genomic data sets that are uncovered in large volumes of genes in

molecular biology. Biological data mining posses various challenges like gene dis-

covery, drug discovery, gene finding, revealing unknown relationship with respect

to structure and function of genes to understand biological systems. This field

faces demands for immediate prediction and classification due to the availability

of DNA cancer data, structure information of proteins and microarray technology

to provide dynamic information about thousand of genes in data. The aims of

Bioinformatics are:

1. To organize data in a way that allows researcher and practitioners to access

existing information and to submit new entries as they are produced.

2. To develop tools, softwares and resources that aid in the analysis and man-

agement of data.

3. To use this data to analyze and interpret the results in a biologically mean-

ingful manner.

4. To help practitioners in the pharmaceutical industry in understanding the

microarray cancer data structures which helps the disease prediction easy.
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1.1 Introduction

1.1.1 DNA

DNA (also known as deoxyribonucleic acid) is the hereditary material in

humans and almost all other organisms. DNA is the material present in our cells

that makes up our genes. Genes carry and follow the instructions our bodies use

to grow and function. Nearly every cell in a persons body has the same DNA.

Most DNA is presented in the cell nucleus (where it is called nuclear DNA), and

a less amount of DNA can also be found in the mitochondria (where it is called

mitochondrial DNA or mtDNA). The information under DNA is stored as a code

made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and

thymine (T). Sequence of nucleotides in a DNA is defined by the sequence of a

gene, which is encoded in the genetic code i.e. 4 standard of nucleotides. One

strand is a polynucleotide (a sequence of nucleotides of 4 types); the second strand

has their complementary base pairs (A = T , C = G). DNA consists of 2 strands

of nucleotides forming a double helix structure. DNA nucleotides vary depending

on 4 possible nitrogenous bases A,C,T,G. In the basis of accurance of pattern ,find

the gene values and partition in classes.

1.1.2 Cancer Classification

Cancer classification is a challenging task of bioinformatics. For cancer classifi-

cation we concentrate on behaviour of DNA microarray. The Microarray technol-

ogy (DNA microarray) [1] allows us to measure the expression levels of thousands

of genes simultaneously, providing great chance for cancer diagnosis and progno-

sis. A microarray cancer data having ‘p’ genes and ‘n’ samples (observations) are

typically organized in a 2D matrix X = [aij] of size p× n. Each element aij gives

the expression level of the ith gene at the jth sample.

Xn×p =



f1 f2 · · · fp

s1 a11 a12 · · · a1p

s2 a21 a22 · · · a2p
...

...
...

. . .
...

sn an1 an2 · · · anp


samples×features

3



1.1 Introduction

xnp = sample s1 have expression measures for genes from f1 to fp .

si = (ai1, ai2, ..., aip)− gene expression profile/feature vector for sample i

fj = set of samples aij for feature j.

where, i = 1, . . . , n. and j= 1,......, p.

When microarray datasets are organized as samples versus gene fashion, then

they are very helpful for classification of different types of tissues and identifica-

tion of those genes whose expression levels are good diagnostic indicators. The

microarray datasets, where the tissue samples represent the samples from cancer-

ous (malignant) and non-cancerous (benign) cells, the classification of them will

result in binary cancer classification. On the other hand, if the samples are from

different subtypes of cancer, then it becomes the problem of multi-class cancer

classification.

The task for cancer classification are of two aspects: identifying new cancer

classes and assigning genes to known classes, which are called class discovery and

class prediction [2]. DNA microarray technology is a promising tool for cancer

diagnosis. It generates large-scale gene expression profiles that include valuable

information on organization as well as cancer [3].

Classification, or supervised learning is one of the major data mining processes.

Classification is concerned with assigning memberships to samples based on su-

pervised expression patterns. The classification of data has two stages. In the first

stage, a model is determined from a set of data called training data (the classes of

which have been established beforehand). This model is shown as rules or math-

ematical formulae. In the second stage the correctness of the evolved model is

estimated. This is done by studying the results of the evolved models function

on a set of data (test data). The classes of the test data also are determined

beforehand. DNA microarray cancer data classification, which determines a new

cancer data belongs to which class it helps to find types of cancer. The aim of

classification is to predict target class for the given unknown input. There are

many approaches available for classification tasks such as statistical techniques,

decision trees, fuzzy logic, neural networks etc.

4



1.1 Introduction

1.1.3 Cancer Clustering

Clustering an unsupervised classification technique, is the process of grouping

or organizing a set of objects into distinct group based on some similarity or

dissimilarity measure among the individual objects, such that the objects in the

same group are more similar to each other than those in other groups. Clustering,

an important microarray analysis tool, is used to identify the sets of genes with

similar expression profiles. Clustering methods partition a set of objects into

groups based on some similarity/dissimilarity metric where the value of may or

may not be known a priori. Clustering can be mainly divided into two types Hard

Clustering and Soft Clustering.

Hard Clustering

Hard Clustering is based on classical set theory, and in this method of cluster-

ing the object either does or does not belong to a cluster [4]. If each data point

is assigned to a single cluster, then the clustering is called crisp (hard) clustering.

In Hard clustering data is partitioned into specified number of mutually exclu-

sive subsets. Using hard partitioning for algorithms based on analytic functional

causes difficulties because hard partitioning is discrete in nature and also since

this functional are not differentiable.

Soft (Fuzzy) Clustering

If a data point has certain degrees of belongingness to each cluster, the par-

titioning is called fuzzy. In Soft Clustering [4], unlike hard clustering the object

doesn’t belong to a particular cluster rather an object belongs to more than one

cluster simultaneously with different degree of membership and with every object

there is an associated set of membership levels. The membership level indicates

the strength of the association between that object and a particular cluster. Ob-

jects on the boundaries between several classes are assigned a membership value

between 0 and 1 indicating partial membership rather than they are not forced

them to fully belong to a single cluster.

5



1.2 Basic Concepts of Artificial Neural Network

1.2 Basic Concepts of Artificial Neural Network

Neural networks, with their remarkable ability to derive meaning from com-

plicated or imprecise data, can be used to extract patterns and detect trends that

are too complex to be noticed by either humans or other computer techniques.

Advantages of ANN include:

1. Adaptive learning: An ability to learn how to do tasks based on the data

given for training or initial experience.

2. Self-Organization: An ANN can create its own organization or representa-

tion of the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel,

and special hardware devices are being designed and manufactured which

take advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of

a network leads to the corresponding degradation of performance. However,

some network capabilities may be retained even with major network damage.

Figure 1.1: The Mathematical Model of Artificial Neuron

An ANN is typically defined by three types of parameters:

1. The interconnection pattern i.e. the synaptic weight between different layers

of neurons.

6



1.2 Basic Concepts of Artificial Neural Network

2. The learning process for updating the weights of the interconnections.

3. The activation function that converts a neuron’s weighted input to its output

activation.

In mathematical form for a given artificial neuron, let there be m + 1 inputs with

signals x0 to xm with associated synaptic weights w0 through xm. Usually, the

x0 input is assigned the value +1, which makes it a bias input with wk0 = bk=0.

Hence only m actual inputs to the neuron, from x1 to xm. The output of kth

neuron is defined by Y which is computed using an activation function ϕ(x) :

yk = ϕ(
m∑
j=0

wjxj) (1.1)

Where vk =
∑m

j=0wjxj is the summing function in which each input is multiplied

by the associated synaptic weight and then added. The mathematical model is

illustrated in Fig 1.3.

1.2.1 Activation Function

In computational networks, the activation function defined as the function which

generates the output for a given set of inputs. It acts as a non-linear filter, which is

one of the important parameters of ANN that characterizes the architecture. The

behavior of neural networks depend upon the choice of activation function [5], i.e.,

how they map input data to output data considering weights of those intercon-

nections. Activation functions with a bounded range are often called squashing

functions.

Activation function can be of following types:

1. Linear function: Here the input units use the identity function. A linear

combination formed where the weighted sum input of the neuron with a

linearly dependant bias becomes the system output. Specifically:

g(y) = y where y =
∑

wixi + b

2. Threshold function: This function is also known as Step function or Heav-

iside function. Here sum is compared with a threshold value θ.

7



1.2 Basic Concepts of Artificial Neural Network

 g(x) = 1 if(x ≥ θ)

g(x) = 0 if(x < θ)

This kind of function is often used in single layer networks and called as

binary step function.

3. Signum function: This function is also known as Quantizer function. It is

especially advantageous for use in neural networks because it is easy to dif-

ferentiate and can dramatically reduce the computation burden for training.

It applies to applications whose desired output values are between -1 and 1. g(x) = 1 if(x ≥ θ)

g(x) = −1 if(x < θ)

4. Sigmoidal function: This function is a continuous function that varies

between asymptotic values 0 and 1 or 1 and -1. The sigmoidal function can

be described as

g(x) =
1

1 + e(−αx)

where α is the slope parameter, which adjust the abruptness of the function

due to the change in asymptotic values.

5. Ramp function: The ramp function combines the step function with a

linear output function. As long as the activation is smaller than the threshold

value θ1, the neuron shows the output yi = 0; if the activation exceeds the

threshold value θ2, the output is yi=1. The neuron’s output for activations in

the interval between the two threshold values θ1≤zi ( x ,wi≤θ2 ) is determined

by a linear interpolation of the activation.

yi = f(zi) =


0 if(zi ≤ θ1)

(zi − θ1) · 1
θ2−θ1 if(θ1 ≤ zi ≤ θ2)

1 if(zi ≥ θ2)

Activation functions for the hidden layers are needed to deploy non-linearity into

the networks which makes multi-layer networks so powerful. The sigmoid function

8



1.2 Basic Concepts of Artificial Neural Network

always been the common choice, either in symmetric [-1, 1] or asymmetric [0, 1]

form. The sigmoid function is global in nature i.e. it divides the feature space into

two halves, one for the response is approaching 1 and another for (0/-1). Hence it

is very efficient for making indiscriminate target value distribution in the feature

space.

1.2.2 NN Architecture

• Single layer Feed Forward Network: This type of network comprise of

two layers, namely the input layer and output layer. Feed-forward ANNs

(figure ) allow signals to travel one way only; from input to output. There is

no feedback (loops) i.e. the output of any layer does not affect the previous

layer neurons. Feed-forward ANNs tend to be straight forward networks

that associate inputs with outputs. They are extensively used in pattern

recognition. The input layer neuron receives the input signals and the output

layer neuron receives the output signals. The interconnected links carry the

synaptic weights. Despite the two layers, the network is termed single layer

since it is the output layer alone which performs computation. The input

layer merely transmits signals to the output layer hence, the name single

layer feed forward network. Such a network is said to be feed forward or

acyclic in nature.

• Multilayer Feed Forward Network: This class of feed forward neural

network distinguishes itself by the presence multiple layers. The architecture

of this network posses input layer, output layer and one or more intermediary

layers called hidden layers, whose computation nodes are correspondingly

called hidden neurons or hidden units. The function of hidden neuron is

to intervene between the external input and network output in some useful

manner. By adding one or more hidden layers, the network is enabled to

extract higher order statistics i.e. valuable when size of input layer is large.

A multilayer feed forward network with m input neurons, h1 neurons in

the first hidden layer, h2 neurons in the second hidden layer and n output

9



1.2 Basic Concepts of Artificial Neural Network

neurons in the output layer is referred as m-h1-h2-n network. The neural

network is said to be fully connected if every node in each layer is connected

to every other node in adjacent forward layer. If some of the communication

links are missed then the network is a partially connected network. Fig

illustrates a multilayer feed forward network:

Figure 1.2: Multilayer Feedforward Network

• Recurring Network: These networks differ from feed forward network

architectures in the sense that there is at least one feedback loop. Thus, in

these networks there could exist one layer with feedback connections .There

could also be neurons with self-feedback links i.e. the output of a neuron is

feedback into itself as input. The presence of feedback loops in the recurrent

structure has a profound impact on the learning capability of the network

and its performance.

Figure 1.3: Recurrent Network

10



1.2 Basic Concepts of Artificial Neural Network

1.2.3 Learning Paradigm

Learning is a process by which the free parameters of neural network are

adapted through a process of stimulation by the environment in which the network

is embedded. It can be broadly classified into 3 categories: supervised learning,

unsupervised learning, reinforcement learning.

• Supervised Learning: It is also referred as learning with a teacher. For

every input pattern a desired output pattern (targeted output) is provided.

The difference between the computed output and desired output generates

the error in the network, which used to change network parameters for

the improvement in networks performance. Error-correction learning and

stochastic learning are generally used in supervised learning process. Its

task often include function approximation problem (regression) i.e. a given

training data consisting of pairs of input patterns x, and corresponding tar-

get t, the goal is to find a function f(x):x → y that matches the desired

response (y) for each training input.

• Unsupervised Learning: In this paradigm no teacher is to oversee the

learning process i.e. no target output is given for the network. Hence the

network learns by its own through discovering and adapting the features, reg-

ulations, correlations or categories in the input pattern automatically. It usu-

ally performs the same task as an auto-associative network does, compressing

the information from inputs. It is also referred to as self-organization, that

it self-organizes data presented to the network and detects their emergent

collective properties. Paradigms of unsupervised learning are Hebbian learn-

ing and Competitive learning. The identification of new tumor classes using

gene expression profiles

• Reinforcement Learning: In this learning paradigm, a teacher does not

present the expected answer but only indicates if the computed output is

correct or incorrect. The learning of an input-output mapping is performed

through continued interaction with the environment that will minimize a

11



1.4 Motivation

scalar index of performance. The information provided helps the network in

its learning process. A reward is given for a correct answer computed and a

penalty for a wrong answer.

1.3 Neural Network for Cancer Classification

NN are an effective tool in the field of cancer Classification. In the training

stage (Approximation), neural networks extract the features of the input data. In

the recognizing stage (Generalization), the network distinguishes the pattern of

the input data by the features, and the result of recognition is greatly influenced

by the hidden layer. Every instance in any dataset used by machine learning

algorithms is represented using the same set of features. The features may be

continuous, real coded, categorical or binary.

Figure 1.4: Brief overview of the entire process

If instances are given with known labels (the corresponding correct outputs)

then the learning is called supervised, in contrast to unsupervised learning, where

instances are unlabeled. Learning is usually accomplished by adjustment and

modification of the connected synaptic weights.

1.4 Motivation

It is required to develop an intelligent system to classify the microarray cancer

data with high accuracy. Many machine learning techniques have been success-

12
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fully implemented for classification and clustering. In the first stage, training of

the classifier is done with known labeled samples. After the classifier is success-

fully built, unknown test samples are used to measure the effectiveness of the

classifier. Among the soft computing paradigms, Neural Network (NN) approach

efficiently handles linear and non-linear data classification tasks. Dimension re-

duction used for remove Noisy or irrelevant features which gives negative effect on

accuracy of any classifier. Neural networks have been chosen as technical tools for

the microarray classification task because extracted features of the DNA data are

distributed in a high dimensional space with complex characteristics. SVM are

used for cancer classification because correctly separate entities into appropriate

classes. The main motivation for dimension reduction are reduce curse of dimen-

sionality problem. Different clustering algorithms usually attempt to cluster the

gene expression data but in this report multiobjective optimization of cluster va-

lidity measures such as compactness and separation among clusters in microarray

cancer data has been proposed and computation of cluster modes is costlier than

that of cluster means, the algorithm needs to find the membership matrices that

takes a reasonable amount of time. However, as fuzzy clustering is better equipped

with to handle overlapping clusters.

Two most desirable features of an multiobjective Genetic algorithm:

• Convergence to Pareto optimal front

• Maintenance of Diversity.

1.5 Objective:

In the experiment on genes we can find the gene which are affected by cancer

are identified by classification and clustering. Correct prediction of unknown genes

or newly discovered mainly concerns the biologists or researchers for prediction of

cancers in cell, molecular function, drug discovery, medical diagnosis etc.

• An efficient classification technique needs to be implemented or develop an

efficient classifier to correctly classify the unknown genes so that the cancer

13
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patient are diagonised correctly and this treatment can be done as per the

diagnosis.

• To develop an efficient classifier which can classify and cluster the new mi-

croarray genes correctly using intelligent techniques and optimizes the result.

• To cluster the unknown genes and optimize cluster compactness and sepa-

ration simultaneously for each chromosome.

1.6 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, all the efforts in

the literature have been focused which describe the various approaches for mi-

croarray cancer classification using Backpropagation neural networks, SVM and

role of MOGA and NSGA-II in clustering. In Chapter 3, feature extraction and

dimension reduction technique and architecture of BPNN and SVM classifier are

discussed with their experimental results. In Chapter 4 basic concept of GA,

MOGA and NSGA-II is discussed. Implementation of MOGA-SVM for classi-

fication and clustering with microarray cancer data and performance measures

using Silhout index S(C) and Adjusted Rand Index (ARI) has also been discussed

with their simulation results. Finally Chapter 5 concludes the report and gives a

platform for further research.
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Chapter 2

Related Work

In previous work, due to the presence of large number of genes and high com-

plexity of biological networks, there is a great need to develop analytical method-

ology to analyze and to exploit the information captured by gene expression data.

In the pattern layer of Backpropagation Neural Network(BPNN) model, due to

the presence of redundant nodes the computational complexity of the network in-

creases and so does the computational cost. The performance of Back-propagation

training algorithm applied to a feedforward multilayer neural network and its per-

formance depend on the activation function and error-correction rule [6]. Feature

extraction of microarray genes has a greater impact on its classification and clus-

tering as it is taken as input to any network. The use of gene expression data in

discriminating two types of very similar cancers acute myeloid leukemia (AML)

and acute lymphoblastic leukemia (ALL) presented in [7]. Classification results

are reported in [2] using methods other than neural networks. Here, we explore

the role of the feature vector in classification. To achieve the best performance

with a learning algorithm on a particular training set, a feature subset selection

method should be applied. PCA is an orthogonal transformation of the coordinate

system in which the data are represented. The new transformed coordinate values

by which data are represented are called principal components [8].

Principal component analysis has been applied to analyze gene expression data

and to improve cluster quality are studied in [9]. The diagnosis of multiple com-

mon adult malignancies could be achieved purely by molecular classification, this

is done by using Support vector machine algorithm [10]. Support Vector Ma-
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chines (SVMs) are a popular machine learning method for classification, regres-

sion, and other learning tasks are presented in [11]. A class discovery procedure

automatically discovered the distinction between acutemyeloid leukemia (AML)

and acute lymphoblastic leukemia (ALL) without previous knowledge of these

classes. An automatically derived class predictor was able to determine the class

of new leukemia cases are presented in [2]. One particular machine learning al-

gorithm, Support Vector Machines (SVMs), has shown promise in a variety of

biological classification tasks, including gene expression microarrays are presented

in [10], [12]. SVM method and one of its improved version CSVM as the classi-

fier gave a better result using gene expression data [13]. The selection of a small

subset of genes out of the thousands of genes in microarray data is important for

accurate classification of phenotypes are presented in [14]. Multiobjective genetic

algorithms gives fast nondominated sorting approach NSGA-II. In this paper we

investigate the Goldberg’s notion of non dominated sorting in GA’s along with

niche and speciation method to find multiple pareto optimal points simultane-

ously [15].

K. Deb et al. presented much better spread of solutions and better conver-

gence near the true Pareto-optimal front compared to Pareto-archived evolution

strategy and strength-Pareto EA two other elitist MOEAs [28]. Ramaswamy et

al. presented tumor gene expression for Multiclass cancer diagnosis [10].

From the related works it has been concluded that Feature extraction for the

microarray cancer data is important for classification and clustering. To reduce

features from data is important to increase the efficiency of the network, hence

a principal component analysis is used for feature reduction. In various paper it

has shown that SVM has A greater efficiency in performance of classification as it

has various parameter to regularize. Multiobjective genetic algorithms is used to

obtain non- dominated solutions .
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Chapter 3

Feature Extraction and Cancer
Classification

3.1 Dimension Reduction

Data analysis causes problem where the data objects have a large number of

features which is more prevalent in areas such as multimedia data analysis and

bioinformatics. It is often beneficial to reduce the dimension of the data in order to

improve the efficiency and accuracy of data analysis [16]. One of the problems with

high-dimensional datasets is that, in many cases, not all the measured variables

are important for understanding the underlying phenomena of interest. While

certain computationally expensive novel methods can construct predictive models

with high accuracy from high-dimensional data, it is still of interest in many

applications to reduce the dimension of the original data prior to any modelling of

the data. To deal with this issue, dimension reduction techniques are often applied

as a data pre-processing step or as part of the data analysis to simplify the data

model. By working with this reduced representation, tasks such as classification

or clustering can often yield more accurate and readily interpretable results, while

computational costs may also be significantly reduced.

The motivation for dimension reduction can be summarized as follows:

• The identification of a reduced set of features that are predictive of outcomes

can be very useful from a knowledge discovery perspective.

• For many learning algorithms, the training, clustering or classification time
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3.1 Dimension Reduction

increases directly with large number of features.

• Noisy or irrelevant features can have the same influence on classification and

clustering as predictive features so they will impact negatively on accuracy.

• Things look more similar on average the more features used to describe them.

It shows that the resolution of a similarity measure can be worse in 20D than

in a 5D space.

In mathematical terms, the problem can be stated as: we have n observations

,each being a realization of p-dimensional random variable X = (x1, x2, . , xp)

where to find a lower dimensional representation of it, s = (s1,s2, , sk) with k ≤

p, that captures the content in the original data according to some criterion. Here

Xnp is transformed to Xnk . Typically this is a linear transformation Wkp that

will transform each object xito x
′
1 in k dimensions with mean µ = (µ1, . , µp) and

covariance matrix
∑

= (X-µ) (X-µ)T =
∑

pxp such matrix can be represented by

X= {xij:1≤i≤n, 1≤j≤p}.

X ′i = WXi (3.1)

3.1.1 Objectives of Feature Extraction

The objectives of feature extraction are many, the major ones are:

• To avoid over fitting and improve model performance.

• To provide faster and more cost-effective models, and

• To gain a deeper insight into the underlying processes that generated the

data.

As the data sets have various attributes and due to the huge amount of data we

cannot consider all the dataset. So we apply different analysis algorithm to reduce

our data sets. So that only few data sets can contribute to the final result. Here

we have used a dimension reduction methods i.e Principal Component Analysis

(PCA) to reduce the size of data.
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3.1 Dimension Reduction

3.1.2 Dimension Reduction using Principal Component Anal-
ysis:

PCA was invented in 1901 by Karl Pearson. Principal component analysis

(PCA) is a mathematical procedure that uses an orthogonal transformation to

convert a set of observations of possibly correlated variables into a set of values of

uncorrelated variables called principal components [17]. Hence the central idea is

to reduce the dimensionality of the data set while retaining as much as possible

the variation in data set. Principal components (PC’s) are linear transformation

of the original set of variables. PC’s are uncorrelated and ordered in such a way

that the first few PC’s contain most of the variables in the original data set. The

number of PCs are less than or equal to the number of original variables. PCA

provides an efficient way to find these components which contribute to the data

variation and thus reduce the input dimensions. If the data are concentrated over a

particular linear subspace, PCA provides a way to compress data and simplify the

representation without losing much information. But if the data are concentrated

over a non-linear subspace the PCA will fail to work well.

Principal Component Analysis (PCA), is a very powerful statistical technique,

to represent the d-dimensional data in a lower-dimensional space without any

significant loss of information. The aim is to project the original I-dimensional

space into an I0 dimensional linear subspace, where I > I0 such that the variance

in the data is maximally explained within the smaller I0 dimensional space . PCA

rigidly rotates the axes of the n-dimensional space to new positions (principal

component) such that principal component 1 has the highest variance, PC 2 has

the next highest variance and so on. The covariance among each pair of the

principal component is zero so the PC’s are uncorrelated and ordered in such a

way that the first few PC’s contain most of the variables in the original data set. If

the data are concentrated over a particular linear subspace, PCA provides a way to

compress data and simplify the representation without losing much information.
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3.2 Classifiers

3.2 Classifiers

3.2.1 Back Propagation Neural Networks Classifier

In multilayered feedforward network, neurons are organized into layers. The in-

put layer is composed not of full neurons, but rather consists simply of the values

in a data record, that constitutes inputs to the next layer of neurons. The next

layer is called a hidden layer; there may be many hidden nodes. The final layer

is the output layer, where there is one node for each class. A single forward pass

through the network results in the assignment of a value to each output node, and

the record is assigned to whichever classifications node had the highest value. Mul-

tilayer feedforward networks are trained using the Backpropagation (BP) learning

algorithm. Backpropagation training algorithm when applied to a feed-forward

multilayer neural network is known as Backpropagation neural network. Func-

tional signals flows in forward direction and error signals propagate in backward

direction. That’s why it is Error Backpropagation or shortly backpropagation

network. The activation function that can be differentiated (such as sigmoidal

activation function) is chosen for hidden and output layer computational neurons.

The algorithm is based on an error - correction rule. Learning is based upon mean

squared error and generalized delta rule. The rule applied for weight updation is

generalized delta rule [18], [6].

The algorithm defines:

1. Initialization of weights (w) and biases (b) to random small values and target

(t) is fixed.

2. Forward computation: Output of each layer is y = Φ (wx× b). where w =

synaptic weight, x = input and b = bias value. Output of input layer is the

input of hidden layer. In this way actual output is calculated.

3. Error is calculated by the difference of target and the actual output at output

layer of neuron. Error e = t− y .
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Output layer

Error Calculation

Input layer

Hidden layer

x1

x2

x3

x4

xn

Figure 3.1: Multilayered Backpropagation Neural Network

4. Backward computation: Error at each layer is calculated by partial differen-

tiation. For output layer error, e0 = 0.5 × (dΦ (hidden) /dy (hidden)) × e

and For hidden layer error, eh = (dΦ (Yinput) /dYinput)× w0ut× e0.

5. Weights and biases in each layer are updated according to the computed

errors. Updated weight, wnew = wold − lr × elayer × xlayer layer . Updated

bias, bnew = bold − lr × elayer layer where elayer is the error of the particular

layer and xlayer is the input that is fed to the layer and lr is the learning

rate.

6. Step 2 to 5 is repeated until the acceptable minimized error.

3.2.2 BP Neural Network Classifier Hybrid with PCA Al-
gorithm

Although back propagation is the most popular learning method in the neural

network community, the drawbacks of it are often pointed out:

1. Very slow computing speed

2. The possibility of getting trapped in local minima.

3. More hidden nodes leads to overfitting and greater capacity of assimilating

data.
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3.2 Classifiers

4. The convergence obtained from backpropagation learning is very slow.

5. The convergence in backpropagation learning is not guaranteed.

3.2.3 Why SVM for cancer classification

SVMs are used for cancer classification mainly due to following two reasons:

1. SVMs have demonstrated the ability to not only correctly separate entities

into appropriate classes, but also to identify instances whose established classifi-

cation is not supports by the data.

2. SVM have many mathematical features that make them attractive for gene

expression analysis, including their flexibility in choosing a similarity function,

sparseness of solution when dealing with large data sets, the ability to handle

large feature spaces, and the ability to identify outliers.

3.2.4 The SVM Classifier and Kernel Selection

A support vector machine (SVM) [19] is a computer techniques used for the

supervised learning process to analyze and recognize patterns, derived from sta-

tistical learning theory developed by Vladimir N. Vapnik and Corinna Cortes in

1995. The goal of SVM is to produce a model (based on the training set) which

predicts the target values of the test set making it as a non-probabilistic linear

classifier. Viewing the input data as two sets of vectors in a d-dimensional space,

an SVM constructs a separating hyperplane in that space, which maximizes the

margin between the two classes of points. Intuitively, a good separation is achieved

by the hyperplane that has the largest distance to the neighbouring data points

of both classes. Larger margin or distance between these parallel hyperplanes in-

dicates better generalization error of the classifier [19]. Implies that only support

vectors matter; other training examples are ignorable.

The SVM is designed for binary-classification problems, assuming the data are

linearly separable. Given the training data (xi, yi), i = 1, 2....m, xiεR
n, yiε {+1,−1}t

where,

Rn : is the input space,
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3.2 Classifiers

Figure 3.2: SVM Classifier

xi : is the sample vector and

yi : is the class label of xi,

the separating hyperplane (w, b) is a linear discriminating function that solves the

optimization problem:

min
w,b

1

2
W ·W T

subject to Yi(< W ·Xi > +b)− 1 ≥ 0

(3.2)

i = 1, 2.....m.

The minimal distance between the samples and the separating hyperplane, i.e.

the margin, is 1
‖W‖ . Data points closest to the hyperplane are called Support

Vectors. In order to relax the margin constraints for the nonlinearly separable

data, the slack variables ξi are introduced into the optimization problem:

min
w,b,ξ

1

2
W ·W T + C

m∑
i=1

ξi

subject to Yi(< W ·Xi > +b) ≥ 1− ξi.....
(3.3)

ξi ≥ 0 In terms of these slack variables, the problem of finding the hyperplane

that provides the minimum number of training errors, i.e. to keep the constraint

violation as small as possible. C > 0 is the penalty parameter of the error term.

The problem of finding the weight vector w can be formulated as minimizing the
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3.2 Classifiers

following function:

L (w) =
1

2
‖w‖2 (3.4)

subject to

yi(w · φ (xi) + b) ≥ 1 (3.5)

i= 1, 2......., n. Here, b is the bias and the function, φ (x) maps the input vector

to the feature vector.

Quadratic optimization algorithms can identify which training points xi are sup-

port vectors with non-zero Lagrangian multipliers αi which used to solve the op-

timization problem.

The dual formulation is given by maximizing the following:

Find α1, ...., αN such that

Q (α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK (xi, xj) (3.6)

subject to (1) yi
∑
αi = 0, and

(2) 0 ≤ αi ≤ C ∀ αi, i=1, 2,...., n

where f(x) =
∑
αiYiX

T
i X + b

Only a small fraction of the αi coefficients are nonzero. The corresponding

pairs of xi entries are known as support vectors and they fully define the decision

function.

SVM maps the training samples from the input space into a higher-dimensional

feature space via a mapping function, called kernel function.

Furthermore, K(Xi, Xj) = XT
i ·Xj is called the kernel function. There are

following four basic kernels: linear, Gaussian, RBF, Sigmoid kernels as below.

Linear Kernel:

K(xi, xj) = xTi xj

Polynomial kernel:

K(xi, xj) = (1 + xi · xj)d
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Radial basis function kernel:

K(xi, xj) = exp(−γ ‖xi − xj‖)2

Sigmoid kernel:

K(xi, xj) = tanh(kxi · xj − δ)

Now BPNN and SVM are applied to the reduced data set to find the networks

accuracy.

Many computation techniques are proposed for solving the first problem,

but gives very less attention to solve other problems. The number of reduced

features retrieved will be determined by cumulative energy threshold value.

3.3 Proposed Work I:

After the data set is normalizes using the following euquation, PCA is then

implemented for reducing the high dimensional DNA microarray data. On the

reduced data set feed forward neural network and SVM are implemented and

their performance accuracies are compared.

3.3.1 Data Preprocessing and Cleaning

Filling in missing values, smoothing noisy data, identifying and removing out-

liers and resolving inconsistencies.

3.3.2 Data Normalization

Data normalization is followed after data preprocessing and cleaning. Data

normalization is essential to the performance of classifiers. We use Z-min-max

27



3.3 Proposed Work I:

normalization method. It transforms the data into the desired range [0, 1].

Xnorm = (Xm×n −min) / (max−min) (3.7)

Xnorm is the result of the normalization, xmn is the feature(gene) to be normal-

ized,max is upper bound of the gene expression value, and min is lower bound of

the gene expression value.

SVM and BPNN often does not gives better accuracy for high dimension, to

improve the efficiency, we proposed to apply Principal component analysis on the

original data set, to obtain a reduced dataset containing possibly uncorrelated

variables without any loss [5], [18]. Then the reduced data set will be applied to

SVM and BPNN classifier to improve performance of the classifier.

Our first contribution is to prove that PCA is able to reduce dimension of features

and to provide classification competitive performance than traditional classifiers

in terms of speed and predictive accuracy, and precision of convergence [20].

Hybrid approach is being proposed for reduction of features and structure mod-

eling of classifiers using PCA [16], [17]. After the implementation of PCA, two

classifiers such as Feed Forward Neural Network (FFNN) trained using BP algo-

rithm and SVM [19] are implemented. The general procedure of the algorithm

explianed in the Figure 3.3:

Figure 3.3: PCA-SVM or PCA-BPNN classifiers for cancer data

The brief overview of our entire proposed process is shown below in Figure 3.4:
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Figure 3.4: Schematic illustration of the proposed method for Leukemia cancer
data

The entire data set of all 72 experiments was first Normalized (step 1)

and then the dimensionality was further reduced by principal component analy-

sis (PCA) to 34 PCA projections, (2) from the original 7129 expression values.

Next, the 34 test experiments were set aside (6) and the 38 training experiments

were randomly partitioned into 3 groups from reduced matrix (5). One of these

groups was reserved for validation and the remaining 2 groups for traning (7).

BPNN/SVM models were then trained using for each sample the 34 PCA values

as input and the cancer category as output (9). The samples were again randomly

partitioned and the entire training process repeated (10). The 34 test experiments
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were subsequently classified using all the trained models. The entire process (5-10)

was repeated.

Algorithm:

The goal of PCA is to derive another matrix P matrix which will describe a linear

transformation of every column in X(every training gene) in the eigenfaces sub-

space, in the form: W=PX, where W are the projections of the training genes

on the subspace described by the eigenfaces. The rows of P matrix represent the

principal components and they are orthogonal.

The steps involved in proposed algorithm are as follows:

Data: DNA Microarray input matrix X

Result: Reduced data set

Phase-1: Apply PCA to reduce the dimension of the data set (input matrix X)

Step 1: Let’s suppose we have X data matrix with m rows of samples and n

columns of genes (features). aijs represent the gene values.

Step 2: To reduce redundant or missing values in matrix X we apply data nor-

malization on matrix X as follows equation:

Xnorm = (Xm×n −min) / (max−min) (3.8)

Step 3: Calculate the mean M from the data set where Xi (i = 1, 2,....., m)

represents the ith column of X and M represent the mean of genes.

M =
1

n

n∑
i=1

Xi (3.9)

Step 4: The genes are mean M centered by subtracting the mean value of gene

from each gene vector and let Ki be defined as mean centered genes.

Ki = Xi −M (3.10)

Where i=1, 2, ......, n.

Step 5: Compute the covariance matrix SA, where A = [K1, K2... Kn]:

SA =
n∑
i=1

AAT (n− 1) (3.11)
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Step 6: Calculate the Eigen Values λ1, λ2....., λn of the Covariance matrix SA, as

sorted in a decreasing order. Let the corresponding eigen vectors be denoted as

a1, a2....., an.

Step 7: Choosing components and form a feature vector by taking the eigenvec-

tors that you want to keep from the list of eigenvectors, and forming a matrix

P [m× a] with these eigenvectors in the columns, Where a is determined based on

some threshold on the eigenvalues. The cumulative energy threshold value can be

calculated as: ∑g
i=1 xi∑p
i=1 xi

> θ (3.12)

Step 8: Derive the new data set with principal components (PC’s) by the following

formula

Final Data (PC ′s) = Original matrix (X) x eigenvector matrix

Phase-2: Apply SVM [19] or BPNN [18]

Step 9: Partition reduced Final data in training and testing data set.

Step 10: Train BPNN and SVM model with training data and

Step 11: Test BPNN and SVM model with testing data and calculate the accu-

racy.

Now BPNN and SVM applied to the reduced data set to find the networks accu-

racy.

3.4 Implementation

The simulation process is carried on a machine having Intel(R) core (TM) 2

Duo processor 3.0 GHz and 3 GB of RAM. The MATLAB version used is R2012(a).

The simulation was carried out with 3 microarray cancer data sets.

3.4.1 Data Sets

Data Set 1: Leukemia cancer

Number of Instances: 72 (consist of 2 classes for distinguishing: Acute Myeloid
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Leukemia(AML) and Acute Lymphoblastic Leukemia (ALL). The complete dataset

contains 25 AML and 47 ALL samples. 38 samples for training set and 34 samples

for test set are chosen for simulation).

Number of Attributes: 7129

Resultant data set (after PCA): 72x34.

The data sets taken from public Kent Ridge Biomedical Data Repository with

URL: http://sdmc.lit.org.sg/GEDatasets/Datasets.html. or following

URL: http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html.

Data Set 2: Ovarian cancer

Number of Instances: 216 (consist of 2 classes for distinguishing: Cancer and

Normal. The complete dataset contains 121 ovarian cancer and 95 normal cancer

samples. 119 samples for training set and 97 samples for test set are chosen for

simulation).

Number of Attributes: 4000.

Resultant data set (after PCA): 216x28.

The data set taken from public Kent Ridge Biomedical Data Repository with url

http:// sdmc.lit.org.sg/GEDatasets/Datasets.html.

Data Set 3: Colon cancer

Number of Instances: 62 (consist of 2 classes for distinguishing: tumor biopsies

and normal biopsies . The samples consist of 36 tumor biopsies collected from

tumors, and 27 normal biopsies collected from healthy part of the colons of the

same patient.)

Number of Attributes: 2000.

Resultant data set (after PCA): 62x12.

The data sets taken from http://microarray.princeton.edu/oncology.

3.4.2 Input Parameters

We have design BPNN architecture as 72x3x1 for Leukemia cancer, 216x3x1 for

Ovarian and 62x3x1 for colon cancer data set.
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BPNN Paramerters: Number of nodes in hidden layer=3, learning rate=0.2,

Number of iterations=1000.

SVM Parameters: C = 2, γ = 8, d = 3.

The parameters that should be optimized include penalty parameter C and the

kernel function parameters such as the γ(gamma) and d for the radial basis func-

tion (RBF) kernel. Generally d is set to be 2. Thus the kernel value is related to

the Euclidean distance between the two samples. γ is related to the kernel width.

Proper parameters setting can improve the SVM classification accuracy.

3.4.3 Performance Measures

The measure used to evaluate the performance of classifiers:

Accuracy = (correctly classified instances) / (Total no. of instances)

*100%

1. Accuracy =(TP+TN) / (TP+FP+TN+FN)

2. Sensitivity = (TP/TP+FN)*100%

3. Specificity = (TN/ TN+FP) * 100%

Where, TP = true positive, TN = true negative

FP = false positive, FN = false negative.

3.5 Numerical Simulation, Results and Discus-

sion

Initially simulation was carried out considering the original features and BPNN

and SVM classifiers. This classification aaproach is validated by considering three

other data sets i.e. Leukemia cancer, Ovarian cancer and colon cancer data. The

accuracy obtained with traditional BPNN and SVM were 91% and 93.1% taking

Leukemia cancer and 87.1% and 96.2% taking Ovarian cancer and 56.7% and

90.03% taking Colon cancer data respectively showing in Table 3.2 and Table 3.3.

After the implementation of PCA, the data distribution across the first three

principal components (PC’s) and first two principal components (PC’s) are shown
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below in Figure 3.5 for Leukemia cancer data set, Figure 3.6 for Ovarian cancer

data set. The classification accuracy varying with number of principal components

(PC’s) showing in Table 3.1. The data distribution across the first two features

showing in Figure 3.8. The Accuracy Vs. graphs were plotted for the principal

component which has shown the maximum accuracy showing in Figure 3.7.

The accuracy obtained with traditional BPNN and SVM were showing in Table

3.3.

(a) 3D representation (b) 2D representation

Figure 3.5: 3D and 2D Schematic representation of data across first three PC’s
and two PC’s (Leukemia Cancer data set)

(a) 3D representation (b) 2D representation

Figure 3.6: 3D and 2D Schematic representation of data across first three PC’s
and two PC’s (Ovarian Cancer data set)

Using PCA-based approach, the original number of features in Leukemia cancer

got reduced from 7129 to 34 Latents (PC’s) (i.e. reduced by 99.03%). It covers

95% of the total variance of the data. Therefore, there is hardly any loss of

information along a dimension reduction. If the first 34 PC’s are chosen, it gives

best classification results. In Ovarian cancer from 4000 to 28 (i.e. reduced by 82%)

and Colon cancer from 2000 to 12 Latents (i.e. reduced by 86.05%). Considering

the reduced features, the accuracy obtained with PCA-BPNN and PCA-SVM were
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3.5 Numerical Simulation, Results and Discussion

Table 3.1: Accuracy vs. No. of PC’s using PCA-SVM (Leukemia Cancer data
set)

No of PC’s Accuracy (%)
10 86.03
20 89.04
30 98.03
40 98.08
50 97.12
60 97.23
70 88.23
80 90.03
90 94.08

100 98.04

Figure 3.7: Plot showing Accuracy vs. No. of PC’s using PCA

Figure 3.8: 2D Schematic representation of data across first two features
(Leukemia data set)

97.3% and 98.08% for leukemia cancer and 96.2% and 98.09% for Ovarian data

set and 95.02% and 97.04% for Colon cancer data set respectively.
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3.6 Conclusion

Table 3.2: Classification Results: SVM Kernels

Data Set Classifiers Time (in sec) Sensitivity ( %) Specificity (%) Accuracy (%)

(ALL vs. AML)

Linear 0.1548 100 93.33 96.08
Leukemia Polynomial 0.0696 100 83.33 87.08

RBF 0.1548 100 93.3 98.08
Sigmoid 0.0580 58.9 76.2 58.82

(Cancer Vs. Normal)

Linear 0.1976 98.3 100 84.02
Ovarian Polynomial 0.1793 98.3 100 98.04

RBF 0.0976 80 64.1 74.02
Sigmoid 0.2818 34.4 76.9 59

(Tumor biopsies Vs. Normal biopsies)

Linear 0.0956 98.3 100 84.02
Colon Polynomial 0.0451 97.03 98 99.02

RBF 0.1146 85.2 94.4 84.8
Sigmoid 0.2318 34.4 66.9 69

Table 3.3: Classification Results: Traditional BP, SVM, PCA-BP, and PCA-SVM

Data Set Classifiers Time (in sec) Sensitivity ( %) Specificity (%) Accuracy (%)

(ALL vs. AML)

BP 6.17 97 86 91
Leukemia SVM 0.23 93 67.3 93.1

PCA-BP 23.74 96 97 97.3
PCA-SVM 0.1548 100 93.3 98.08

(Cancer Vs. Normal)

BP 20.02 98 88.2 87.1
Ovarian SVM 9.45 68 81 96.2

PCA-BP 20.02 98 98.2 96.2
PCA-SVM 0.0976 98.3 100 98.09

(Tumor biopsies Vs. Normal biopsies)

BP 20.02 48 58.2 56.7
Colon SVM 9.45 88 81 90.03

PCA-BP 20.02 92.2 88.2 95.02
PCA-SVM 0.0451 97.3 98 97.04

3.6 Conclusion

PCA-BP learning algorithm is designed to reduce network error between the

actual output and the desired output of the network in a gradient descent man-

ner. Experimental results illustrate PCA-SVM method showing better results

than PCA-BPNN, traditional BPNN and SVM, in terms of speed, accuracy and

complexity. The two stage approach of classification has shown promising results

as they have outperformed traditional approaches. In this work the problem of

cancer classification is solved successfully using PCA-SVM. If the data are con-

centrated over a particular linear subspace, PCA provides a way to compress data

and simplify the representation without losing much information. But if the data

are concentrated over a non-linear subspace, PCA fails to work well. Work can

be further extended by implementing singular value decomposition or indepen-

dent component analysis for dimension reduction. Accuracy can be checked by

considering some more number of objectives (such as discarded features, weight

value association with accuracy etc.) which can be efficiently solved using Genetic

algorithm(GA) [21] and MultiObjective Genetic algorithm (MOGA) [15].
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Chapter 4

Multiobjective Genetic
Algorithm-Based Fuzzy
Clustering combining with
Support Vector Machine for
Clustering and Classification

We propose a novel method for selecting the final clustering solution from

the set of Pareto-optimal solution based on majority voting among the Pareto

front solutions. Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based

multiobjective clustering algorithm has been adopted that optimizes the cluster

compactness and cluster separation simultaneously. A challenging issue in MOO

is obtaining a final solution from the set of Pareto-optimal solutions. It combines

the multiobjective clustering technique with support vector machine (SVM) based

classifier to obtain the good performance of classifier in terms of accuracy, speci-

ficity and sensitivity for classification and in terms of Silhoutte Index and ARI

Index for clustering [19].

The main contributions of this article are embodied in the following five as-

pects:

1. This article presents two fitness functions (fuzzy compactness and fuzzy

separation) for an individual chromosome, being optimized simultaneously.

2. This approach identifies the solution i.e. the individual chromosome which

gives the optimal value of the compactness and separation.
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3. The multi-objective technique is first used to produce a set of non-dominated

solution. The non-dominated set is then used to find some high confidence

points using a fuzzy voting technique.

4. Points which have higher degree are taken as a training data in SVM classifier

and remaining points as testing data.

5. An experiment is designed and is being applied this approach to three mi-

croarray cancer data set. The experimental results confirm that MOGA-

SVM approach gives more effective result for classification and clustering.

6. Performance of MOGA-SVM compared with other classifiers and methods

in terms of accuracy, sensitivity, specificity, Silhoutte index and ARI index.

4.1 Evolutionary Algorithms

Two most desirable features of an Evolutionary Algorithm:

• Convergence to Pareto optimal front- To improve the convergence on the

Pareto fronts Multiobjective Evolutionary Algorithm (MOEA) uses non-

dominated sorting algorithms.

• Maintenance of Diversity (Representation of the entire Pareto optimal front)-

Increase the diversity of solutions.

4.1.1 Brief Overview of GA

Genetic algorithms (GAs) [21] [22] are popular search and optimization strate-

gies guided by the principle of Darwinian evolution. Although genetic algorithms

have been previously used in data clustering problems [23] [24], as earlier, most of

them use a single objective to be optimized, which is hardly equally applicable to

all kinds of datasets.

4.1.2 Single Objective Optimization Problem (SOOP)

An optimization problem that involves optimization of single objective is known

as Single Objective Optimization Problem.
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4.1 Evolutionary Algorithms

In general a single objective function can be defined as minimizing or maxi-

mizing a function f(x) subject to inequality constraints g(x) ≥ 0, for all i = 1,

2.....,m and equality constraints h(x) = 0, for all j = 1, 2.... p, xεΩ. So, the

solution minimizes or maximizes the function f(x), where x is a n-dimensional de-

cision vector variable x = (x1, x2.....xn) from some universe Ω. The inequality and

equality constraints must be fulfilled while optimizing (minimizing or maximizing)

the objective function f(x). In SOOP, only a single optimal solution is obtained.

And either the maximum or the minimum fitness value is selected as the optimal

(best) solution depending upon the problem.

4.1.3 Multiobjective Optimization

Multiobjective Optimization (MOO) is a very powerful technique, used to

find solutions to many real-world search and optimization problems. Many of

these problems have multiple objectives, which lead to the need of obtaining a

set of optimal solutions, known as effective solutions. It has been found that

Multiobjective Optimization algorithm is a highly effective one for finding multiple

effective solutions in a single simulation run. It means that can be optimized

simultaneously.

The multiobjective optimization criterion [25] formally, can be stated as fol-

lows: Find the vector x∗ = [x∗1, x
∗
2......, x

∗
n]T of the decision variables that will

satisfy the ’m’ inequality constraints as,

gi(x) ≥ 0, i = 1, 2, ......,m (4.1)

and the p equality constraints as,

hi(x) = 0, i = 1, 2, ....., p (4.2)

and optimizes the vector function

f(x) = [f1(x), f2(x)....., fk(x)]T (4.3)

The constraints given in (4.1) and (4.2) define the feasible region F which contains

all the admissible solutions. Any solution outside this region is inadmissible since
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4.1 Evolutionary Algorithms

it violates one or more constraints. The vector x∗ denotes an optimal solution in F.

In the context of multiobjective optimization, the difficulty lies in the definition

of optimality, since we find a situation where a single vector x∗ represents the

optimum solution with respect to all the objective functions.

In a precise manner, MOPs are those problems where the goal is to optimize k

objective functions simultaneously. The set of k objective functions can be either

all maximize or all minimize or combination of both. The objective functions can

be linear or non-linear and continuous or discrete in nature. There are a number

of popular multiobjective optimization techniques. Among them, the GA based

techniques such as NSGA-II, and SPEA2 [26] are very popular.

4.1.4 Brief Overview of MOGA

Multiobjecyive optimization is different from single objective optimization. In

single objective optimization one attempt to obtain the best design or decision.

Which is usually global maximun or global minimum depending on the optimiza-

tion problem is that of minimization or maximization. In the case of multiple

objectives there may not exist one solution which is best (global maximum or

global minimum) with respect to all objectives. In a typical multiobjective op-

timization problem, there exists a set of solution which are superior to the rest

of solutions in the search space when all objectives are considered but are infe-

rior to other solutions in the space in one or more objectives. These solutions are

known as pareto optimal solutions or non-dominated solutions [27]. To solve many

real-world problems, it is necessary to optimize more than one objective simulta-

neously. MOGA has been introduced to optimize multiobjective problems [15].

Recently, a lot of multiobjective GAs (MOGAs) have been used by researchers

for microarray cancer data. Basically, MOGA is characterized by its fitness as-

signment and diversity maintenance strategy. Multiobjective genetic algorithms

(MOGAs) are used in this regard in order to determine the appropriate cluster

centers (modes) and the corresponding partition matrix. Non-dominated sorting

GA-II (NSGA-II), which is a popular elitist MOGA, is used as the underlying

optimization method. The two objective functions, i.e., the global fuzzy compact-
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4.1 Evolutionary Algorithms

ness of the clusters and fuzzy separation, are optimized simultaneously. Unlike

single objective optimization, which yields a single best solution, in MOO the final

solution set contains a number of Pareto-optimal solutions, none of which can be

dominated or further improved on any one objective without degrading another.

The single objective formulation is extended to reflect the nature of multi-

objective optimization problem where there is more than one objectives function

which needs to be optimizing [25]. Thus there is set of solutions instead of a single

solution i.e. a set of optimal solution and they are found using Pareto-optimality

theory. The set of solutions obtained is based on dominance and non-dominance.

Issues in MOGA

• Fitness assignment- In each generation the non-dominated set is maintained,

fitness is adjusted according to the domination of each individual.

• Density estimation- In order to encourage diversity in the population fitness

is reduced for similar solutions.

4.1.5 Fast Non-Dominated Sorting

Generally non-dominated sorting is one of the main time consuming parts of

multiobjective evolutionary algorithm (MOEA). So, design of fast non-dominated

sorting algorithm is very necessary to improve the performance of a MOEA.

In fast non-dominated sorting approach, the population is sorted based on non-

domination. After initializing the population, it is sorted based on non-domination

in each front. The first front being completely dominant in the current population,

the individuals in the second front is only dominated by the individuals of first

front and the front goes on. The individuals are assigned rank (fitness) values

or based on front to which they belong. Individuals of first front are assigned

rank 1 and individuals in second front are assigned a value of 2 and so on. In

addition to rank also a second parameter called crowding distance is calculated

for every individual. Crowding distance measures how close an individual is to

its neighbours. Large crowding distance will maintain a better diversity in the

population. NSGA - II has been designed in such a way that the time complexity
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4.1 Evolutionary Algorithms

is small, hence the non-domination process is fast.

For population size of P and number of objective function O, fast non-dominated

can defined as follow

For each individual p, two entities are calculated

• Domination Count, np the number of individuals (solutions) which domi-

nates the individual p, and

• Sp, a set of solutions which the individual p dominates.

All solutions in the first non-domination front will have np = 0. Then for every

individual q in Sp, reduce the domination count by one and in doing so, if for

any individual the domination count becomes zero then we put it into separate

list Q, and the second front is identified. The process is continued until all fronts

are identified. The total complexity of the fast non-domination procedure is OP 2,

whereas the complexity of normal non-domination sorting is OP 3.

NSGA

The Non-dominated sorting Genetic Algorithm is a popular non-domination

based genetic algorithm for multiobjective optimization. Actually NSGA is an

extension of Genetic Algorithm for solving multiple objective function optimiza-

tions.

Drawbacks of NSGA:

• Computational complexity,

• Lack of elitism and

• Choosing the optimal parameter value for sharing parameter σshare.

Pareto Terminology

The concept of Pareto optimality comes handy in the domain of multiobjective

optimization.

A formal definition of Pareto optimality from the viewpoint of minimization

problem may be given as follows: A decision vector x∗ is called Pareto optimal if
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and only if there is no x that dominates x∗ , i.e., there is no x such that

∀i ∈ {1, 2, ...., k} , fi(x) ≤ fi(x
∗) and

∃i ∈ {1, 2, ...., k} , fi(x) ≤ fi(x
∗)

Where, x∗ is Pareto optimal if there exists no feasible vector x that causes a

reduction of some condition without a simultaneous increase in at least another.

In general, Pareto optimum usually admits a set of solutions called non-dominated

solutions.

1. Dominance- A solution is said to dominate other if it is better in all

objectives than the other solution. Mathematically, Solution vector x =

(x1, x2, ......, xk) is said to dominate solution vector y = (y1, y2, ....., yk) if

and only if xi dominates yi for all i = 1, 2,...., k.

2. Non-dominance- A solution is said to be non-dominated if it is better than

the other solutions in atleast one objective. When Pareto points are plotted

in objective space, the non-dominated solutions generates the pareto fronts.

The set of all non-dominated solutions is called the “Pareto front” or pareto

otimal solutions.

Figure 4.1: Schematic representation of Pareto-optimal solutions

4.1.6 NSGA-II

A modified and updated version of NSGA is called NSGA - II was developed,

it has better sorting, incorporates elitism and the sharing parameter need not

to be chosen a priori. The elitism feature favours the elites of a population i.e.

the non-dominated solution among the parent and child populations are directly

propagated to the next generation. In this way a good solution found early will

never be lost unless a better solution is discovered. The near-Pareto-Optimal
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string of the last generation provides different solutions to the clustering problem.

Main goals of Nondominated sorting genetic algorithm (NSGA-II) are as follows:

• High computational complexity of nondominated sorting- The currently-

used nondominated sorting algorithm has a computational complexity.

• Lack of elitism- Show that elitism can speed up the performance of the GA

significantly, which also can help preventing the loss of good solutions once

they are found.

The most characteristic part of NSGA-II is its elitism operation, where the

parent and child populations are combined and the non-dominated solutions from

the combined population are propagated to the next generation. The near-Pareto

optimal strings of the last generation provide the different solutions to the clus-

tering problem [28].

Figure 4.2: Process of NSGA-II

Fitness Assignment Ranking Based on Non-Domination Sorting

Each individual of the population is assigned a rank (fitness) value based on the

non-domination sorting procedure. After calculating the rank, for the individuals

of same front crowding distance is also calculated.
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4.1 Evolutionary Algorithms

Diversity Mechanism

The non-domination sorting algorithm converge the solution to the Pareto op-

timal front. But along with the convergence one more desirable feature of MOGA

needs to be maintain, the diversity of the front i.e. a good spread of the solutions

along the Pareto optimal front. The original NSGA uses a well-known sharing

parameter which sets the desired extent of diversity. But this method makes the

computation complex and also increased the dependence of the method on value

of sharing parameter chosen. But In NSGA - II, the use of crowded comparison

approach eliminated the above difficulties to some extent.

Density Estimation - Crowding Distance Assignment

The basic idea behind the crowding distance is finding the Euclidean distance

between individual in a front based on their objectives in the m dimensional hy-

per space. The individuals in the boundary are always selected since they have

infinite distance assignment. Crowding distance approaches aim to obtain a uni-

form spread of solutions along the best-known Pareto front without using a fitness

sharing parameter.

Crowded Operator based sorting

Crowded comparison operator (I) is used to guide the process of selection at the

various stages of the algorithm toward a uniformly spread-out Pareto optimal

front. Assume that every individual i in the population has two attributes:

• Non-domination rank (irank)

• Crowding Distance (idistance)

Now, between two individuals i and j , the individual with lower rank will be

selected(i.e. irank < jrank) or if both individual belongs to the same front then

their crowding distance is compared, and individual with greater crowding distance

i.e. an individual located in a lesser crowded region is selected.

Crowding Distance Assignment (I)

l=I

for each i, set I(i)distance = 0

46



4.2 Proposed Work II: MOGA-SVM

for each objective m

I=sort(I,m)

I(1)distance = I(l)distance =∞

for i=2 to (l-1)

I(i)distance = I(i)distance + (I(i+1)m−I(i−1)m)
(fmaxm −fminm )

Elitism

The most characteristic part of NSGA - II is its elitism operation, where the

non-dominated solutions among the parent and the child populations are propa-

gated to the next generation.

4.2 Proposed Work II: MOGA-SVM

We use Z-min-max normalization method shown in equation (3.7). It trans-

forms the data to scale with in the range of [0, 1]. For data reduction Principal

Component Analysis (PCA) is used [17]. From the large genes, the 100 genes with

the largest variation across samples are selected. In this study, the multiobjective

clustering technique uses NSGA-II, a popular multiobjective genetic algorithm, as

the underlying multiobjective framework. Coordinates of the cluster-centers are

encoded in the chromosomes of the genetic algorithm and two objective functions

are developed so as to simultaneously optimize cluster compactness ’π’ and cluster

separation ’Sep’ as shown in equation (4.7) and (4.9) respectively.

1. Chromosome Representation: The number of genes in the chromosome

represents the sequence of attributes or feature values representing the K

cluster modes. If each object has p features {f1, f2, ..., fp} the length of a

chromosome will be k × p, where the first p positions (or genes) represent

the p-dimensions of the first cluster mode, the next p positions represent

that of the second cluster mode, and so on.

Every gene of the chromosome is real coded as shown in Figure 4.3.

2. Population initialization: The initial K cluster modes encoded in each

chromosome are randomly chosen as K random objects of the cancer dataset.
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Figure 4.3: Schematic representation of chromosome

This process is repeated for each of the P chromosomes in the population,

where P is the population size.

3. Computation of fitness function: In this paper, the global compactness

’π’ of the clusters and the fuzzy separation ’Sep’ are considered as the two

fitness functions, which need to be optimized simultaneously [29].

For computing the measures, the modes encoded in a chromosome are first

extracted. Let these be denoted as S = [s1, s2, ..., sK ]. The membership

values uik,i = 1, 2 ,..., K and k = 1, 2,..., n are computed as follows [30]:

uik =
1∑k

j=1

(
D(si,xk)
D(sj ,xk)

) 1
g−1

, for 1 ≤ i ≤ K, 1 ≤ k ≤ n (4.4)

where D (si, xk) is the distance between point xk and cluster si. If D (sj, xk)

is equal to zero for some value of j, then uik is set to zero for all i=1, 2,....K,

i 6= j, while uik is set equal to one. ’g’ is the weighting coefficient. The

variation ’σi’ and fuzzy cardinality ’ni’ of the ’ith’ cluster i =1, 2,..., K are

calculated using the following equations [29]:

σi =
n∑
k=1

umikD (si, xk) , 1 ≤ i ≤ K (4.5)

and

ni =
n∑
k=1

uik, 1 ≤ i ≤ K (4.6)

The global compactness ’π’ of the solution represented by the chromosome

is then computed as [29]:

π =
K∑
i=1

σi
ni

=
K∑
i=1

∑n
k=1 u

m
ikD (si, xk)∑n
k=1 uik

(4.7)
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To compute other fitness function i.e., fuzzy separation ’Sep’, the mode si of

the ith cluster is assumed to be the center of a fuzzy set {sj|1 ≤ j ≤ k, j 6= i}.

Hence, the membership degree of each sj to si, j 6= i is computed as [29]:

µij =
1∑K

l=1,l 6=j

(
D(si,xk)
D(sj ,xk)

) 1
g−1

, i 6= j (4.8)

Subsequently, the fuzzy separation is defined as [29]:

sep =
k∑
i=1

k∑
j=1,j 6=i

µgijD (si, sj) (4.9)

Objective is to minimize the fuzzy compactness (π) and maximize the fuzzy

separation (Sep). But in this paper, the multi-objective problems are mini-

mized i.e., the objective function π and 1
sep

are minimized simultaneously.

4. Selection: The selection operation used here is the crowded binary tour-

nament selection, used in NSGA-II to improve both quality and diversity of

Pareto solutions. After selection, the selected chromosomes are put in the

mating pool.

5. Crossover: Real coded GAs use Simulated Binary Crossover (SBX) [31] [32]

operator for crossover.

Simulated Binary Crossover: The crossover operation used here is the

Simulated Binary Crossover depending on crossover probability µc. It is

used to generate the new offspring solutions from the chromosomes selected

in the mating pool in every iteration. Simulated Binary Crossover simulates

the binary crossover observed in nature and is given as below

c1,k =
1

2
[(1− βk) p1,k + (1 + β) p2,k] (4.10)

c2,k =
1

2
[(1− βk) p1,k + (1 + β) p2,k] (4.11)

where ci,k is the ith child with kth component, pi,k is the selected parent and

βk (≤ 0) is a sample from a random number generated having the density.

p (β) =
1

2
(µc + 1) βµc , if0 ≤ β ≤ 1 (4.12)
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p (β) =
1

2
(µc + 1)

1

βµc
, ifβ > 1 (4.13)

This distribution can be obtained from a uniformly sampled random number

u between (0, 1)µc is the distribution index for crossover. That is

β (u) = (2u)
1

µc+1 (4.14)

β (u) =
1

(2 (1− u))( µc + 1)
(4.15)

6. Polynomial Mutation: For performing the mutation [32], a mutation

probability µm has been used to create a offspring population N. If a chromo-

some is selected to be mutated, the gene position that will undergo mutation

is selected randomly. After that, the gene value of that position is replaced

by another random value chosen from the corresponding gene domain. Then

elitism operation to choose a particular solution has been applied among the

set of non-dominated solutions N based on the best fitness value.

ck = pk +
(
puk − plk

)
δk (4.16)

where ck is the child and pk is the parent with puk being the upper bound on

the parent component, plk is the lower bound and δk is small variation which

is calculated from a polynomial distribution by using

δk = (2rk)
1

µm+1 − 1, ifrk < 0.5 (4.17)

δk = 1− (2− (1− rk))
1

µm+1 , ifrk > 0.5 (4.18)

where, rk is an uniformly sampled random number between (0, 1) and µm is

mutation distribution index.

7. Computation of fuzzy membership matrix Uik: For each of the non-

dominated solutions yi, 1 ≤ i ≤ N , uik may be computed as per equation

(4.4). This matrix is reorganized to make them consistent with each other

i.e., cluster j in the first solution should be equivalent to cluster j in all other

solutions. For example, the solution string (x, y, z), (m, n, p) is equivalent

to (m, n, p), (x, y, z).
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8. Fuzzy majority voting technique: The motivation is that the points

that are assigned to a cluster with high membership degree by most of the

non-dominated solutions can be considered as they are clustered properly.

Points having maximum membership degree (to some cluster j) have been

selected. These points are referred to as training points. They also should

be greater than membership threshold α(0 < α < 1) and fuzzy majority

voting threshold value β(0 < β < 1), for at least N solutions.

9. SVM classifier: For each points

• Selected points that can be used to train the classifier.

• Four different Kernel functions are used for training such as Linear,

Polynomial, Sigmoidal and Radial Basis Function.

• The remaining low-confidence points (test points) can be thereafter

classified using four trained SVM classifiers.

• The label vectors of the training and test points are combined to yield

the label vector λ of the complete dataset for each classifier.

• Combine the four clustering label vectors through majority voting en-

semble, i.e., each point is assigned a class label that obtains the max-

imum number of votes among the four clustering solutions. Ties are

broken randomly.

4.3 IMPLEMENTATION

The simulation process is carried on a machine having Intel(R) core (TM) 2 Duo

processor 3.0 GHz and 3 GB of RAM. The MATLAB version used is R2012(a).

The simulation was carried out with 3 data sets. First 100 genes with largest

variation across samples are selected out of large genes using PCA.

4.3.1 Data Sets

Data Set 1: Leukemia cancer

Number of Instances: 72 (consist of 2 classes for distinguishing: Acute Myeloid
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Leukemia(AML) and Acute Lymphoblastic Leukemia (ALL). The complete dataset

contains 25 AML and 47 ALL samples.)

Number of Attributes: 7129

Resultant data set (after PCA): 72x100.

The data sets taken from public Kent Ridge Biomedical Data Repository with

URL: http://sdmc.lit.org.sg/GEDatasets/Datasets.html. or following

URL: http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html.

Data Set 2: Ovarian cancer

Number of Instances: 216 (consist of 2 classes for distinguishing: Cancer and

Normal. The complete dataset contains 121 ovarian cancer and 95 normal cancer

samples.)

Number of Attributes: 4000.

Resultant data set (after PCA): 216x100.

The data set taken from public Kent Ridge Biomedical Data Repository with url

http:// sdmc.lit.org.sg/GEDatasets/Datasets.html.

Data Set 3: Colon cancer

Number of Instances: 62 (consist of 2 classes for distinguishing: tumor biopsies

and normal biopsies . The samples consist of 36 tumor biopsies collected from

tumors, and 27 normal biopsies collected from healthy part of the colons of the

same patient.)

Number of Attributes: 2000.

Resultant data set (after PCA): 62x100.

The data sets taken from http://microarray.princeton.edu/oncology.

4.3.2 Parameters for MOGA-SVM

Chromosome: In our experiment every chromosome represents 200 attributes or

features. The population size (Np) for every generation is fixed at 50. Then the

initial population matrix size is 50x200. MOGA-SVM scheme are shown in Table

4.1. While the stopping criteria is met (i.e., Max 1000 generations) the execution
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Table 4.1: PARAMETER VALUES FOR MOGA-SVM

Parameters Value
Population size P 50

Maximum Number of generation G 1000
Crossover probability (µc) 10
Mutation probabilityp(µm) 1/chromosome length

Fuzzy exponent g 2
Membership threshold α 0.65

Majority voting threshold β 0.65
kernel function parameters γ 8

Penalty parameter C 2
kernel function parameters d 3

of NSGA-II algorithm stops. The sizes of the training and testing sets depend

on the two parameters α and β . Here, α is the membership threshold, i.e., it

is the maximum membership degree above which a point can be considered as a

training point. The parameter β (majority voting threshold) determines that a

minimum number of non-dominated solutions agree with each other in the fuzzy

voting context. If α and β are increased, the size of the training set will decrease,

but it implies that more number of nondominated solutions agree with each other

and confidence of the training set is high. However, if α and β are decreased,

the size of the training set increases, but it indicates that less number of non-

dominated solutions have agreement among themselves and the training set has

less confidence. To achieve a trade off between the size and confidence of the

training set, after several experiments, we have set both the parameters to a value

of 0.65.

4.3.3 Performance metrics

The performance of MOGA-SVM evaluated in classification and clustering

techniques results.

Classification

The measure used to evaluate the performance of MOGA-SVM classifiers are

accuracy, sensitivity and specificity:

Clustering

For evaluating the performance of the clustering algorithms on the three cancer

data sets, an external validity measure namely Silhouette Index (S(C)) [33] and
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an internal validity measure namely Adjusted Rand Index (ARI) [34] are used.

Silhouette index: Silhouette index is a cluster validity index that is used to

judge the quality of any clustering solution C. The silhouette can be used to:

(i) select the number of clusters and (ii) assess how well individual observations

(samples) are clustered. Suppose ‘a’ represents the average distance of a point from

the other points of the cluster to which the point is assigned, and ‘b’ represents

the minimum of the average distances of the point from the points of the other

clusters. Therfore, the silhouette width s of the point is defined as:

s =
b− a

max (a, b)
(4.19)

For a given number of clusters K, the overall average silhouette width for the

clustering is simply the average of s over all observations n,

s(C) =

∑n
1 s

n
(4.20)

Silhouette index s(C)is the average silhouette width of all the data points (genes)

and it reflects the compactness and separation of clusters. The value of silhouette

index varies from -1 to 1 and higher value indicates better clustering result. Hence

this index is a good indicator for selecting the number of clusters.

Adjusted Rand Index: Suppose T is the true clustering of the samples of a

cancer data set based on domain knowledge and C a clustering result given by

some clustering algorithm. Let a, b, c and d respectively denote the number of

sample pairs belonging to the same cluster in both T and C, the number of pairs

belonging to the same cluster in T but to different clusters in C, the number of

pairs belonging to different clusters in T but to the same cluster in C,and the

number of pairs belonging to different clusters in both T and C. ARI (T,C)is then

defined as follows:

ARI (T,C) =
2 (ad− bc)

(a+ b) (b+ d) + (a+ c) (c+ d)
(4.21)

The value of ARI(T,C) lies between 0 and 1, and the higher value indicates that

C is more similar to T.Also, ARI (T,T)=1.
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4.3.4 Result

Initially simulation was carried out considering the computation of individual

chromosome which gives the optimal value of minimum Fuzzy Compactness ‘π’

and maximum Fuzzy Seperation ‘sep’ after the implementation of NSGA-II for

Ovarian, Colon and Leukemia cancer data showing in Table 4.2. Figure 4.4. shows

pareto optimal fronts obtained after the implementation of NSGA-II for Ovarian,

Colon and Leukemia cancer data. The Figure 4.4. plots the pareto optimal fronts

produced by one of the runs of the multiobjective algorithm along with the best

solutions. In Figure 4.4. the X-axis represents the first fitness (π) value and

Y-axis represents the second fitness (Sep). Figure 4.4. also marks the selected

solution from the non-dominated Pareto-optimal set. It appears that these selected

solutions tend to fall at the knee regions of the Pareto fronts. The count of dot is

less than or equal to 50, as population size equals 50.

Table 4.2: Performance of Fuzzy Compactness (π) and Fuzzy Seperation (sep)

Data Set Fuzzy Compactness (π) Fuzzy Seperation(sep) Chromosome Number

MOGA
Ovarian Cancer 3.7821 5.6179 1st
Colon Cancer 3.7050 4.882 2nd

Leukemia Cancer 25.8552 4.29 2nd

(a) Ovarian Cancer (b) Colon Cancer (c) leukemia Cancer

Figure 4.4: Schematic representation of Pareto-optimal fronts produced by
MOGA-NSGA-II for cancer data

Classification Results:

The performance of MOGA-SVM kernels in terms of classification are shown in

Table 4.3 and Table 4.4. RBF (Radial Basis Function) kernel with MOGA has

given better result among all the SVM kernels for Ovarian cancer shown in Table
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4.3. Comparision of Classification result of MOGA-SVM with MOGA-BP, SVM

and BP classifiers is shown in Table 4.4. Table 4.4 shows that MOGA-SVM

gives higher accuracy in minimum time; it means it classifies the cancer data in

accurately. The label vectors of the training and test points are combined to

obtain label vector λ for the complete data set.

Table 4.3: Classification Results: SVM Kernels with MOGA

Data Set Classifiers Time (in sec) Sensitivity ( %) Specificity (%) Accuracy (%)

(Cancer Vs. Normal)

Linear 0.1021 94.3 100 92.08
Ovarian Polynomial 0.0976 100 96.6 99.08

RBF 0.8261 83.6 65 76.03
Sigmoid 0.2112 58 73 62.03

(Tumor biopsies Vs. Normal biopsies)

Linear 0.0651 96.2 86.3 80.06
Colon Polynomial 0.0461 98.3 95.3 99.06

RBF 0.1342 88.3 78.4 96.02
Sigmoid 0.1621 82 59 54.08

Leukemia (ALL vs. AML)

Linear 0.2612 100 90.6 98.01
Polynomial 0.0433 100 88.6 76.06

RBF 0.1261 96 98.3 99.03
Sigmoid 0.2318 35.2 67 66.02

Table 4.4: Classification Results: Traditional BP, SVM, MOGA-BP, and MOGA-
SVM

Data Set Classifiers Time (in sec) Sensitivity ( %) Specificity (%) Accuracy (%)

(Cancer Vs. Normal)

BP 6.18 86 97 87.1
Ovarian SVM 0.43 97 89.4 96.2

MOGA-BP 1.8231 96 86.3 98.4
MOGA-SVM 0.0976 100 96.6 99.08

(Tumor biopsies Vs. Normal biopsies)

BP 10.42 48 59 56.7
Colon SVM 0.23 97 86.8 90.03

MOGA-BP 12.41 86 100 84.08
MOGA-SVM 0.0461 98.3 95.3 99.06

Leukemia (ALL vs. AML)

BP 4.12 58 86 91
SVM 9.45 68 92 93.1

MOGA-BP 0.1821 100 98.2 98.02
MOGA-SVM 0.1261 98 93.3 99.03

Clustering Results:

For evaluating the performance of the clustering algorithms on the three cancer

data sets, an external validity measure namely Silhouette Index (S(C)) [33] and

an internal validity measure namely Adjusted Rand Index (ARI) [34] are used.

Table 4.5 reports the S(C) and ARI index values for MOGA-SVM clustering al-

gorithm. The values reported in the tables indicate that for the three cancer data

sets, MOGA-SVM provides the best silhouette index (S(C)) and Adjusted Rand

Index (ARI) scores. It is also evident that the results get improved with the

application of SVM clustering on MOGA.
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Table 4.5: Comparison of different algorithms in terms of silhouette score and ARI
Index for cancer data sets

Methods S (C) ARI
Ovarian Cancer Colon Cancer Leukemia Cancer Ovarian Cancer Colon Cancer Leukemia Cancer

MOGA-SVM 0.5676 0.4213 0.3432 0.6233 0.2411 0.2861

4.4 Conclusion

This article proposes a novel method for obtaining a final solution from the set

of non-dominated solutions produced by NSGA-II based real-coded multi-objective

fuzzy clustering scheme, that optimizes two fitness functions i.e., fuzzy compact-

ness ‘π’ and fuzzy seperation ‘sep’ simultaneously. Results on microarray cancer

datasets have been demonstrated and statistical superiority has been established

through statistical significance test for clustering in terms of Silhouette Index and

ARI Index and for classification in terms of accuracy, specificity, and sensitivity .

As a scope of further research, performance of other popular classifiers combined

with different MOGA technique, such as AMOSA [35] has to be tested.
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Chapter 5

Conclusion and Future Work

Classification and Clustering of Bioinformatics data play a vital role in detec-

tion of cause of diseases. In this report BPNN, SVM, PCA-SVM and PCA-BP

techniques are implemented for clasification and BPNN, SVM, MOGA-SVM and

MOGA-BP are implemented for classification and clustering both. PCA-BP learn-

ing algorithm is designed to reduce network error between the actual output and

the desired output of the network in a gradient descent manner for classification.

It was observed that PCA-SVM gives maximum accuracy. If the data are concen-

trated over a particular linear subspace, PCA provides a technique to compress

data and simplify the representation without losing much information. But if the

data are concentrated over a non-linear subspace, PCA fails to work well. We pro-

pose a novel method for obtaining a final solution from the set of non-dominated

solutions produced by NSGA-II based real-coded multiobjective fuzzy clustering

scheme, that optimizes two fitness functions i.e., fuzzy compactness ‘π’ and fuzzy

seperation ‘sep’ simultaneously successfully. Results on microarray cancer datasets

have been demonstrated and statistical superiority has been established through

statistical significance test in terms of accuracy, specificity, sensitivity for clas-

sification and Silhouette Index and ARI Index for clustering. The experimental

results show that the MOGA-SVM approach is more effective by comparing it

to MOGA-BP, PCA-SVM, PCA-BP, SVM, and BP methods for clustering and

classification. As a scope of further research, performance of other popular clas-

sifiers combined with different MOGA techniques, have to be tested and different

parameters, various operators may be considered for higher efficiency.
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